Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Показать больше
Показать меньше
ИринаЭлина11
21.10.2020 04:35 •
Геометрия
МНЕ УМОЛЯЮ ВАС ЛЮДИИИ ЭТО СОР
С РЕШЕНИЕМ ОБЯЗАТЕЛЬНО
Показать ответ
Ответ:
aleks102102
26.03.2021 09:45
R=О1В=5, r=О2В=3. АВС - равносторонний треугольник. m - общая касательная.
Пусть ∠МВС=х, тогда ∠АВМ=60-х.
Углы МВС и АВМ - углы между касательной и хордой, значит ∠АО1В=2(60-х) и ∠СО2В=2х.
Формула хорды: l=2Rsin(α/2), где α - градусная мера хорды.
АВ=2·О1В·sin(60-х)=2R·sin(60-x),
ВС=2·О2В·sinx=2r·sinx,
АВ=ВС, значит
2R·sin(60-x)=2r·sinx,
2·5(sin60·cosx-cos60·sinx)=2·3sinx,
10(√3cosx/2-sinx/2)=6sinx,
5√3cosx-5sinx=6sinx,
11sinx=5√3cosx,
11tgx·cosx=5√3cosx,
tgx=5√3/11.
-----------------------------------------------
tg²x+1=1/cos²x,
tg²x+1=1/(1-sin²x),
1-sin²x=1/(tg²x+1),
sin²x=1-[1/tg²x+1)],
sinx=5√3/14.
------------------------------------------------
Итак, ВС=2r·sinx=6·5√3/14=15√3/7≈3.7 см - это ответ.
0,0
(0 оценок)
Ответ:
nastiaX352
23.10.2021 23:43
Обозначим через ВК высоту, опущенную на сторону АС.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.
0,0
(0 оценок)
Популярные вопросы: Геометрия
nikitazaharov28
09.04.2022 06:57
Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC, ACB прямые, АС=СВ=5, DB=5...
андрей12212
25.02.2020 10:10
Прямоугольник abcd где сторона ас равна 8 угол равен 30 градусов найти площадь прямокгольника...
ersultanplay
16.02.2023 09:32
Об описанном четырёхугольнике abcd известно, что ac=7, bc=4, cd=5, угол d=60 градусов.найдите ab...
29082
16.02.2023 09:32
Найдите периметр параллелограмма abcd, если bc=6,cd=8...
SorrySorry
10.10.2020 07:56
Один из острых углов прямоугольного треугольника равен 86 градусов, найдите другой острый угол....
mahomaev
10.10.2020 07:56
Надо. 1. в прямоугольном треугольнике авс с гипотенузой ав внешний угол при вершине в равен 150( градусов), ас=4см. найдите длину гипотенузы треугольника. 2. в треугольнике...
Зубканай
27.02.2020 02:50
1)один из углов при основании равнобедренного треугольника равен 53°.найдите остальные углы треугольника 2)в треугольнике авс угол в=120; биссиктриса угла а и с пересекаются...
alinka660066
27.02.2020 02:50
Решите с , только все расписано и с рисунком дан треугольник mnp. плоскость, параллельная прямой mn, пересекает сторону мр треугольника в точке а, а сторону npв точке...
Лавданим
26.01.2022 14:43
Довести, що чотирикутник авсd з вершинами а(-2; 3) в(1; -2) с(5; 0) д(2; 5) є паралелограмом...
VikaDavydova2
22.04.2021 05:46
Напиши имя, фамилию. Sofja Seleznova Answer recorder (optional) - Voice Video Listen and number the rooms. One room is extra. Послушайте описания комнат. Решите, какие...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Пусть ∠МВС=х, тогда ∠АВМ=60-х.
Углы МВС и АВМ - углы между касательной и хордой, значит ∠АО1В=2(60-х) и ∠СО2В=2х.
Формула хорды: l=2Rsin(α/2), где α - градусная мера хорды.
АВ=2·О1В·sin(60-х)=2R·sin(60-x),
ВС=2·О2В·sinx=2r·sinx,
АВ=ВС, значит
2R·sin(60-x)=2r·sinx,
2·5(sin60·cosx-cos60·sinx)=2·3sinx,
10(√3cosx/2-sinx/2)=6sinx,
5√3cosx-5sinx=6sinx,
11sinx=5√3cosx,
11tgx·cosx=5√3cosx,
tgx=5√3/11.
-----------------------------------------------
tg²x+1=1/cos²x,
tg²x+1=1/(1-sin²x),
1-sin²x=1/(tg²x+1),
sin²x=1-[1/tg²x+1)],
sinx=5√3/14.
------------------------------------------------
Итак, ВС=2r·sinx=6·5√3/14=15√3/7≈3.7 см - это ответ.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.