Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Чертеж и весь счет во вложении.
Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Дальше вычисляем SC.
ответ: 10 см
Правильный четырехугольник - это квадрат.
Радиус вписанной в него окружности равен половине стороны. ⇒
а=2r
P=4•2r=8r
C=2πr
P/C=8r/2πr=4/π, и это величина для квадрата постоянная.
По данным задачи:
Радиус окружности, описанной около квадрата, равен половине диагонали квадрата.
Тогда диагональ квадрата 2•R=12√2
Сторона квадрата – катет равнобедренного прямоугольного треугольника с гипотенузой 12√2 и острыми углами 45°
а=12√2•sin45°=6√2•√2:2=12
Р=4•12=48
Радиус вписанной окружности r=12:2=6
С=2•p•6=12π