Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Примем половину боковой стороны за х, вся сторона равна 2х.
Косинус угла В при основании равен (4√6/2)/2х = √6/х.
Косинус этого же угла определим по теореме косинусов из треугольника АВЕ: cos B = (4√6)² + x² - 21²)/(2*(4√6)*x.
Приравняем значения косинуса:
(4√6)² + x² - 21²)/(2*(4√6)*x = √6/х.
Приведём к общему знаменателю.
96 + x² - 441 = √6*8√6.
x² = 48 + 441 - 96 = 393.
Отсюда х = √393, а боковая сторона равна 2√393 см.
Найдём высоту СД (она же и медиана к основанию).
СД = √((2√393)² - (2√6)²) = √(1572 - 24) = √1548 = 6√43 ≈ 39,34463 см.
По свойству медиан ОД = (1/3)СД = 2√43 ≈ 13,11488.
ответ: ОД = 2√43 см.