Координата - это местонахождение точки в той или иной плоскости (на отрезке, на оси и т.д.).
Допустим, у тебя расчерчена координатная плоскость. Отмечена некоторая точка В. Чтобы определить её координату, нужно посмотреть, против каких значений относительно осей х и у находится точка В. Например, точка В может быть над осью х, или под ней. Смотришь, под какой ( над какой) отметкой находится точка. Т.е. если провести прямую от этой точки с оси х, то они должны быть друг другу перпендикулярны. Это, кстати, ещё один определить координату.
Это отметка в координате точки отмечается первой и называется абсциссой точки.
Когда определил(-а) абсциссу, смотришь, какое значение находится слева или справа от точки. Можно снова мысленно провести перпендикуляр, но уже к оси у.
Эта точка в координате обозначается второй и называется ординатой данной точки.
Может быть такое, что точка лежит на одной из осей. Тогда координата этой точки будет 0 у той оси, к которой, проводя перпендикуляр, он совпадает с одной из осей. Например, точка В(5;0). 0 - это ось у. Значит, точка будет лежать просто на оси х на отметке 5. А если бы было (0;5), то точка лежала бы уже не на оси х в точке 5, на оси у в точке 5.
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Что вообще такое "координата"?
Координата - это местонахождение точки в той или иной плоскости (на отрезке, на оси и т.д.).
Допустим, у тебя расчерчена координатная плоскость. Отмечена некоторая точка В. Чтобы определить её координату, нужно посмотреть, против каких значений относительно осей х и у находится точка В. Например, точка В может быть над осью х, или под ней. Смотришь, под какой ( над какой) отметкой находится точка. Т.е. если провести прямую от этой точки с оси х, то они должны быть друг другу перпендикулярны. Это, кстати, ещё один определить координату.
Это отметка в координате точки отмечается первой и называется абсциссой точки.
Когда определил(-а) абсциссу, смотришь, какое значение находится слева или справа от точки. Можно снова мысленно провести перпендикуляр, но уже к оси у.
Эта точка в координате обозначается второй и называется ординатой данной точки.
Может быть такое, что точка лежит на одной из осей. Тогда координата этой точки будет 0 у той оси, к которой, проводя перпендикуляр, он совпадает с одной из осей. Например, точка В(5;0). 0 - это ось у. Значит, точка будет лежать просто на оси х на отметке 5. А если бы было (0;5), то точка лежала бы уже не на оси х в точке 5, на оси у в точке 5.
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2