Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
В прямоугольном треугольнике ACB (∠С=90°) проведена высота CD.Гипотенуза AB равна 10 см, ∠CBA=30°.Найдите BD .
Дано : ΔABC
∠ACB =90° ;
СD ⊥ AB ;
AB =10 см ;
∠CBA = 30°.
- - - - - - -
BD - ?
- - - - - - можно решать разными но
AC = AB/2 =10/2 = 5 (см)_как катет лежащий против угла ∠CBA=30°
AB² = AC²+СB² ( теорема Пифагора)
CB² = AB² -AC² =10² -5² =75 СB=√75 = 5√3 (см)
Но CB² =AB*BD (пропорциональные отрезки в прямоугольном Δ -е)
BD = CB²/ AB =75/ 10 =7,5 (см ) ответ : 7,5 см .
2-ой
∠ACD = ∠CBA = 30° (углы со взаимно перпендикулярными сторонами) следовательно
AD = AC/ 2 (опять как катет против угла ∠ACD =30° в ΔADC )
AD =5/2 =2,5 см ; BD =AB -AD =10 -2,5 =7,5 (см )
см приложение
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см