на данной прямой находится точки к -1 ;2. в 0;1. напиши уравнение этой прямой если коэффициент отрицательные в вводи их вместе со знаком минус без скобок. -1x+.….y+=0
Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
1. Треугольник РОС равен треугольнику АОК по двум углам и стороне между ними (<POC=<AOK - вертикальные, <PCO=<OAK - внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС, а АО=ОС - диагональ АС в точке О делится пополам). Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак). Что и требовалось доказать. 2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20. Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20. ответ: Sapkd=20. 3. По Пифагору СК=√(64+25)=√89. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда PK=√41.
Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак).
Что и требовалось доказать.
2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20.
Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20.
ответ: Sapkd=20.
3. По Пифагору СК=√(64+25)=√89.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда
PK=√41.