Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².