a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)
a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)
Вектор АВ{Xb-Xa;Yb-Ya} или AB{-2;2}. |AB|=√(-2²+2²)=2√2.
Вектор ВC{Xc-Xb;Yc-Yb} или BC{3;3}. |AB|=√(3²+3²)=3√2.
Вектор CD{Xd-Xc;Yd-Yc} или CD{2;-2}. |AB|=√(2²+(-2²))=2√2.
Вектор АD{Xd-Xa;Yd-Ya} или AD{3;3}. |AB|=√(3²+3²)=3√2.
Итак, противоположные стороны четырехугольника равны.
Проверим углы.
CosA=(Xab*Xad+Yab*Yad)/|AB|*|AD| = (-6+6)/|AB|*|AD| =0,
Значит <A=90°
CosB=(Xab*Xbc+Yab*Ybc)/|AB|*|BC| = (-6+6)/|AB|*|BC| =0,
Значит <B=90°.
Следовательно, четырехугольник ABCD - прямоугольник, что и требовалось доказать.