Любопытно, что площадь трапеции равна квадрату её средней линии.
Пояснение: т.к. трапеция равнобокая, ее диагонали равны и точка пересечения дает нам 2 равнобедренных треугольника, опирающихся на верхнее и нижнее основания трапеции. Высота пирамиды h будет равна сумме высот этих 2х треугольников, опущенных на основания, а т.к. высота прямоугольного равнобедренного треугольника равна половине его основания, то высота трапеции - сумма высот ∆ков - равна половине суммы оснований трапеции
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
S = ½•(a+b)•h = ½•(30+16)•23= 529
Объяснение:
Любопытно, что площадь трапеции равна квадрату её средней линии.
Пояснение: т.к. трапеция равнобокая, ее диагонали равны и точка пересечения дает нам 2 равнобедренных треугольника, опирающихся на верхнее и нижнее основания трапеции. Высота пирамиды h будет равна сумме высот этих 2х треугольников, опущенных на основания, а т.к. высота прямоугольного равнобедренного треугольника равна половине его основания, то высота трапеции - сумма высот ∆ков - равна половине суммы оснований трапеции
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник
решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°