Объяснение: если угол КЛМ=60°, то угол NLM=30°. Рассмотрим ∆ОLM. Он прямоугольный, где OM и OL- катеты, а LM-гипотенуза. Катет лежащий напротив угла 30° равен половине гипотенузы. Напротив него лежит катет МР=10дм, тогда гипотенуза LM=10×2=20дм. Мы нашли гипотенузу ∆OLM, и она же является стороной ромба. Теперь найдём периметр ромба. Периметр - это сумма всех его сторон, поэтому Р=20×4=80дм, а полупериметр=80÷2=40дм
Р/2=40дм
Радиус вписанной окружности в ромб=(а×sinL)/2=(20×sin60°)/2=
=20×√3/2÷2=10√3÷2=5√3дм
r=5√3дм- это я так нашла по другой формуле.
Можно найти высоту ромба, через его площадь по формуле h=S÷a, где S- площадь ромба, а "а" сторона ромба, а h - высота, проведённая к ней. высота будет в 2 раза больше радиуса: h=200√3÷20=10√3дм. Так как высота больше радиуса в 2 раза, то r=10√3÷2=5√3дм
Теперь найдём площадь вписанной окружности по формуле:
Объяснение: если угол КЛМ=60°, то угол NLM=30°. Рассмотрим ∆ОLM. Он прямоугольный, где OM и OL- катеты, а LM-гипотенуза. Катет лежащий напротив угла 30° равен половине гипотенузы. Напротив него лежит катет МР=10дм, тогда гипотенуза LM=10×2=20дм. Мы нашли гипотенузу ∆OLM, и она же является стороной ромба. Теперь найдём периметр ромба. Периметр - это сумма всех его сторон, поэтому Р=20×4=80дм, а полупериметр=80÷2=40дм
Р/2=40дм
Радиус вписанной окружности в ромб=(а×sinL)/2=(20×sin60°)/2=
=20×√3/2÷2=10√3÷2=5√3дм
r=5√3дм- это я так нашла по другой формуле.
Можно найти высоту ромба, через его площадь по формуле h=S÷a, где S- площадь ромба, а "а" сторона ромба, а h - высота, проведённая к ней. высота будет в 2 раза больше радиуса: h=200√3÷20=10√3дм. Так как высота больше радиуса в 2 раза, то r=10√3÷2=5√3дм
Теперь найдём площадь вписанной окружности по формуле:
S=πr²=3,14×(5√3)²=3,14×25×3=3,14×75=
=235,5дм²
ответ: Sвп.окр=235,5дм², р/2=40дм; r=5√3дм
Дано:
треугольник АМВ.
АМ = АВ = МВ.
DE = 6 см
Найти:
S от М до АВ
Так как МВ = АМ = АВ => треугольник АМВ - равносторонний.
А так как треугольник АМВ - равносторонний => этот треугольник ещё и равнобедренный.
Сумма углов треугольника равна 180°
∠А = ∠М = ∠В = 180°/3 = 60° (треугольник АМВ - равносторонний)
Так как треугольник АМВ - равнобедренный => MD - высота, медиана, биссектриса
=> ∠AMD = ∠BMD = 60˚/2 = 30˚
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> MD = 2DE
MD = 6 * 2 = 12 см
(MD - и есть расстояние от М до АВ)
ответ: 12 см.