На листе бумаги нарисована линия АВ и точка М вне линии. Лист сложили пополам вдоль линии. В точке М сложенный лист проткнули иголкой. В результате на другой части сложенного листа появилась дырочка. Обозначим ее N. Доказать, что MN перпендикулярна АВ решить
1) DB - диагональ ромба ⇒ DB биссектриса ∠ADC ⇒ ∠ADB = ∠BDC = 60°
2) ∠DBC = ∠ADB = 60° (тк внутренние накрест лежащие при AD ║ BC и сек. BD)
3) DB - биссектриса ∠ABC (по св-ву диагоналей ромба) ⇒ ∠ABD = ∠DBC = 60°
∠ADB = ∠BDC = ∠ABD = ∠DBC = 60° ⇒ ∠A + ∠C = 360° - ( ∠ADB + ∠BDC + ∠ABD + ∠DBC ) = 360° - 240° = 120° ⇒ ∠A = ∠C (тк ABCD - ромб и параллелограмм, а ∠A и ∠C - противолеж) = 120° : 2 = 60°
ΔADB и ΔDBC - равносторонние (тк их углы равны 60°) ⇒ AB = AD=DC = BC = BD = 3 см
Периметр = AB + AD + DC + BC = 3+3+3+3 = 12 см
ответ: P = 12 см
Длина L бокового ребра пирамиды равна:L = H/sinα = 6/(√2/2) = 6√2 см.
б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см².
в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.