На одиничному колі поначити: -довільну точку а (x; y) -радіус r -координати точок перетину кола з осями ох і оу - sin a на трикутнику оав - соѕ а на трикутнику оав - по одиничному колі визачити tg 90° = cos180°= sin 180°--
1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
В чем же особенность этих задач? Задачи на построение не просты. Не существует единого алгоритма для решения всех таких задач. Каждая из них по-своему уникальна, и каждая требует индивидуального подхо да для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания. Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.
2) Обозначим высоту ВН.
Р тр-ка АВН: АВ+АН+5=18;
Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства:
АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС.
3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
да для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания.
Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.