На одной стороне угла с вершиной В отмечены точки М и О, на другой - К и Р так, что ВМ = ВР, ВО < ВМ, ВК < ВР, а угол ОРВ = угол КМБ. Докажите, что: ТМ = ТР, где Т - точка пересечения отрезков МК и ОР.
Треугольники АВ1В и АА1В прямоугольные с общей гипотенузой АВ, значит оба они вписаны в одну окружность с диаметром АВ. Точка О - центр окружности. АО=ВО=АВ/2=4/2=2. В тр-ке АА1В1 ОА1=ОВ1=R=2. По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2. ∠А1ОВ1=arccos(-1/2)=120°. Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит: ∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
Точка О - центр окружности. АО=ВО=АВ/2=4/2=2.
В тр-ке АА1В1 ОА1=ОВ1=R=2.
По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2.
∠А1ОВ1=arccos(-1/2)=120°.
Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит:
∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.