1. ∠3 = ∠1 = 72° как вертикальные, ∠5 = ∠1 = 72° и ∠7 = ∠3 = 72° как соответственные при пересечении параллельных прямых а и b секущей с.
∠4 + ∠5 = 180° по свойству односторонних углов. ∠4 = 180° - ∠5 = 180°- 72° = 108° ∠2 = ∠4 = 108° как вертикальные, ∠8 = ∠4 = 108° и ∠6 = ∠2 = 108° как соответственные.
2. Обозначим один из односторонних углов х, тогда другой 1,5х. Сумма односторонних углов при пересечении параллельных прямых секущей равна 180°: x+ 1,5x = 180° 2,5x = 180° x = 180° / 2,5 = 72° 1,5 x = 108°
Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
∠3 = ∠1 = 72° как вертикальные,
∠5 = ∠1 = 72° и ∠7 = ∠3 = 72° как соответственные при пересечении параллельных прямых а и b секущей с.
∠4 + ∠5 = 180° по свойству односторонних углов.
∠4 = 180° - ∠5 = 180°- 72° = 108°
∠2 = ∠4 = 108° как вертикальные,
∠8 = ∠4 = 108° и ∠6 = ∠2 = 108° как соответственные.
2.
Обозначим один из односторонних углов х, тогда другой 1,5х.
Сумма односторонних углов при пересечении параллельных прямых секущей равна 180°:
x+ 1,5x = 180°
2,5x = 180°
x = 180° / 2,5 = 72°
1,5 x = 108°
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку