С циркуля и линейки нужно разделить отрезок АВ пополам: из А и В как из центра провести полуокружности радиусом больше половины отрезка. Точки их пересечения по обе стороны отрезка соединить прямой. Эта прямая делит отрезок на два равных АО=ВО.
Из вершины М данного угла, как из центра, циркулем проводим окружность радиусом, равным ОВ - половине заданного отрезка.
Она пересечет стороны угла в точках С и К на равном расстоянии от вершины М. Это расстояние равно половине отрезка АВ.
Пусть АВС - равнобедренный треугольник и АВ=ВС. В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см. Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус. 1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см r=√(15*15*5/35) =15/√7 или 15√7/7 см. 2. Для равнобедренного треугольника r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание. Тогда r=15√(10/70)=15/√7=15√7/7 см. ответ: r=15√7/7 см.
Пусть задан отрезок АВ и угол с вершиной М.
С циркуля и линейки нужно разделить отрезок АВ пополам: из А и В как из центра провести полуокружности радиусом больше половины отрезка. Точки их пересечения по обе стороны отрезка соединить прямой. Эта прямая делит отрезок на два равных АО=ВО.
Из вершины М данного угла, как из центра, циркулем проводим окружность радиусом, равным ОВ - половине заданного отрезка.
Она пересечет стороны угла в точках С и К на равном расстоянии от вершины М. Это расстояние равно половине отрезка АВ.
МС=МК=ОВ. Построение закончено.
В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы).
Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см.
Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус.
1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см
r=√(15*15*5/35) =15/√7 или 15√7/7 см.
2. Для равнобедренного треугольника
r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание.
Тогда
r=15√(10/70)=15/√7=15√7/7 см.
ответ: r=15√7/7 см.