На отрезке ab выбрана точка c так, что ac=56 и bc=9. построена окружность с центром a, проходящая через c. найдите длину касательной, проведённой из точки b к этой окружности.
См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°.
Соединяем точку А₁ с точкой D.
В треугольнике АА₁D
AA₁=2 м
AD=1 м
∠A₁AD=60°
По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3
A₁D=√3 м
Треугольник A₁AD- прямоугольный
по теореме обратной теореме Пифагора:
АА₁²=AD²+A₁D² 2²=1+( √3 )²
A₁D⊥AD
В основании квадрат, стороны квадрата взаимно перпендикулярны
АС⊥AD
Отсюда AD⊥ плоскости A₁CD
ВС || AD
BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD
По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD
A₁C - высота призмы
A₁C=Н
Из прямоугольного треугольника
A₁DC:
А₁С²=А₁D²-DC²=(√3)²-1=3-1=2
A₁C=Н=√2 м
S(параллелепипеда)=S(осн)·Н=АВ²·Н=1·√2=√2 куб. м
1) • тр. АВС - прямоугольный, угол С = 90°
• Применим теорему Пифагора:
Квадрат гипотенузы прямоугольного треугольника равен сумме квадртов катетов.
ОТВЕТ: 5
2) • тр. MNK - прямоугольный, угол N = 90°
• По теореме Пифагора:
ОТВЕТ: 3\/17
5) • тр. АВС - равнобедренный, АВ = ВС ,
BD - высота, опущенная на сторону АС
• По свойству равнобедренного треугольника:
Высота, проведённая в равнобедренном треугольнике к основанию, является и медианой, и биссектрисой.
Значит, AD = DC = ( 1/2 ) • AC = ( 1/2 ) • 16 = 8
• Рассмотрим тр. BDC (угол BDC = 90°):
По теореме Пифагора:
ОТВЕТ: 15
6) • тр. RMN - правильный, то есть равносторонний треугольник => RN = NM = RM = 6
• Любая высота, проведёная в равностороннем треугольнике, является и медианой, и биссектрисой:
NK = KM = ( 1/2 ) • NM = ( 1/2 ) • 6 = 3
• Рассмотрим тр. RNK (угол RKN = 90°):
По теореме Пифагора:
ОТВЕТ: 3\/3 .
douwdek0 и 7 других пользователей посчитали ответ полезным!
5
5,0
(3 оценки)
Войди чтобы добавить комментарий
ответ
3,0/5
1
Удачник66
главный мозг
14.3 тыс. ответов
18 млн пользователей, получивших
1) x^2 = 3^2 + 4^2 = 9 + 16 = 25; x = 5
2) x^2 = 13^2 - 4^2 = 169 - 16 = 155; x = V155
Здесь V это корень, просто у меня в телефоне значка корня нет.
Если бы катет был 5, то х = 12.
5) x^2 = 17^2 - (16/2)^2 = 17^2 - 8^2 = 289 - 64 = 225; x = 15
6) x^2 = 6^2 - (6/2)^2 = 6^2 - 3^2 = 36 - 9 = 27; x = V27 = 3*V3
cliy4h и 2 д