На плоскости расположен пятиугольник ABCDE такой, что ∠ACD=∠ADC=70∘, ∠ABD=50∘, ∠CBD=20∘, ∠AEC=40∘, ∠CED=10∘. При инверсии с центром в точке A точки B, C, D, E переходят в точки B′, C′, D′, E′. Выберите все равнобедренные треугольники. △AB′C′ △AC′D′ △AD′E′ △B′C′D′ △C′D′E′ △B′C′E′ треугольник, образованный прямыми C′E′, AD′, B′D′ треугольник, образованный прямыми B′D′, AC′, C′E′
Сделаем рисунок. Применены формулы высоты правильного треугольника (h=a √3):2, длины окружности (C=2пR) площади круга S=пR², площади боковой поверхности цилиндра S=2s оснований+ Sбоковая. --------------------------------- Площадь полной поверхности цилиндра равна сумме площадей двух оснований и площади боковой поверхности. Для того, чтобы найти их, нужно найти радиус окружности основания и высоту цилиндра. Высоту цилиндра СД найдем из прямоугольного треугольника АСД. Этот треугольник - половина равностороннего треугольника, высота которого равна СД, а сторона равна стороне АС=9 а) СД=АС* (√3):2=4,5√3 или б) СД=АС*sin60, что одно и то же. Радиус АО=ОД Треугольник АОД - равнобедренный. АД противолежит углу АСД, равному 30 градусов, и равна половине АС. АД=9:2=4,5 см Из треугольника АОД, образованного основанием АД сечения и радиусами, найдем эти радиусы, проведя в нем высоту ОН. Радиус ОД=НД:sin 60 НД=АД:2=2,25см R=ОД=2,25: (√3):2=1,5√3 см Длина окружности основания равна C=2πR=3√3см Площадь основания равна S=πr²=6,75π см² Площадь боковой поверхности Sбок=3√3*4,5√3=40,5 см² Sполная=40,5+2*6,75π=40,5+13,5 π=40,6+≈42,4=≈82,9 см²
Диагональю он делится в отношении 4:5, т.е. на углы
90°:(4+5)*4=40°
и 90°:(4+5)*5=50°
Диагонали прямоугольника равны, точкой пересечения делятся пополам и со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
Углы треугольника, образованного половинами диагоналей с боковой стороной, равны 40°,40°, и угол между диагоналями 180°-2•40°=100°
Углы треугольника, образованного половинами диагоналей с большей стороной, равны 50°,50°, и угол между диагоналями 80°.
ответ: Диагонали прямоугольника при пересечении образуют углы 100°и 80°. Обычно указывается меньший угол. ответ: 80°
Применены формулы высоты правильного треугольника (h=a √3):2,
длины окружности (C=2пR)
площади круга S=пR²,
площади боковой поверхности цилиндра S=2s оснований+ Sбоковая.
---------------------------------
Площадь полной поверхности цилиндра равна сумме площадей двух оснований и площади боковой поверхности.
Для того, чтобы найти их, нужно найти радиус окружности основания и высоту цилиндра.
Высоту цилиндра СД найдем из прямоугольного треугольника АСД.
Этот треугольник - половина равностороннего треугольника, высота которого равна СД,
а сторона равна стороне АС=9
а) СД=АС* (√3):2=4,5√3
или
б) СД=АС*sin60, что одно и то же.
Радиус АО=ОД
Треугольник АОД - равнобедренный.
АД противолежит углу АСД, равному 30 градусов, и равна половине АС.
АД=9:2=4,5 см
Из треугольника АОД, образованного основанием АД сечения и радиусами,
найдем эти радиусы, проведя в нем высоту ОН.
Радиус ОД=НД:sin 60
НД=АД:2=2,25см
R=ОД=2,25: (√3):2=1,5√3 см
Длина окружности основания равна
C=2πR=3√3см
Площадь основания равна
S=πr²=6,75π см²
Площадь боковой поверхности
Sбок=3√3*4,5√3=40,5 см²
Sполная=40,5+2*6,75π=40,5+13,5 π=40,6+≈42,4=≈82,9 см²
Каждый угол прямоугольника равен 90°
Диагональю он делится в отношении 4:5, т.е. на углы
90°:(4+5)*4=40°
и 90°:(4+5)*5=50°
Диагонали прямоугольника равны, точкой пересечения делятся пополам и со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
Углы треугольника, образованного половинами диагоналей с боковой стороной, равны 40°,40°, и угол между диагоналями 180°-2•40°=100°
Углы треугольника, образованного половинами диагоналей с большей стороной, равны 50°,50°, и угол между диагоналями 80°.
ответ: Диагонали прямоугольника при пересечении образуют углы 100°и 80°. Обычно указывается меньший угол. ответ: 80°