Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
следовательно ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты), следовательно:
Samk/Sabm=1/2 следовательно:
12/Sabm=1/2 следовательно:
24=Sabm.
Sabk=24см²+12см²=36см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
следовательно ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты), следовательно:
Samk/Sabm=1/2 следовательно:
12/Sabm=1/2 следовательно:
24=Sabm.
Sabk=24см²+12см²=36см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=36*2=72см².
ответ: 72см²
1) а) 62°, 62°, 56°
б) 59°, 59°, 62°,
2) а) 16°, 16, 148°
б) 82°, 82°, 16°
2)
У равнобедренного треугольника углы при основании равны
поэтому всегда можно рассмотреть 2 случая:
1) ∠1=62°
а)если это угол при основании Δ, то ∠2=∠1=62°
по теореме о сумме трёх углов треугольника:∠1+∠2+∠3=180° →
∠3=180°-2*∠1=180°-124°=56°
б) если это угол, лежащий против основания равнобедренного треугольника , то
∠1+∠2+62°=180°
2∠1=180°-62°;
∠1=118°:2;
∠1=∠2=59°.
2) а) ∠1=∠2=16°- углы при основании
∠3=180°-2*∠1=180°-32°=148°
б) ∠3=16°- угол, лежащий против основания
∠1=∠2=(180°-16°):2=164°:2=82°