На построениеa) постройте треугольник по двум сторонам и углу между ними; b) в полученном треугольнике постройте биссектрису одного из углов . построить и сделать анализ.
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Как это получается?
Объяснение: Диагональ ВD делит параллелограмм площадью 42 ед. на два равных треугольника. Площадь каждого 42:2=21 ед.
Ѕ ∆ АРD = 16 ед (дано), => Ѕ ∆ РВD=21-16=5 (ед).
Треугольники АРD и РВD имеют общую высоту DH. Соответственно:
S(ADP)=AP•DH:2
S(PBD)=PB•DH:2 => S(ADP):S(PBD)=(AP•DH:2):(PB•DH:2) = АР:РВ =>
АР:РВ=S(ADP):S(PBD)=16:5 (см. рисунок приложения).
6√3
Объяснение:
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.