на прямой отложи на два равных отрезка AB взята. O на отрезке BK которая делит его в отношении 2:3 найдите расстояние между серединами отрезков AB и об если b равно 16 см
Проведем диагонали параллелограмма. Рассмотрим треугольники ВДС и КЕС. ВС:КС=12:3=4:1 СД:СЕ=8:2=4:1 Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол. Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны, ⇒КЕ параллельна ВД. Проведем через А прямую, параллельную ВД. Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно. ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам. ⇒МС=ВС*2=24 см МК=МС-КС=24-3=21 см АР:РС=МК:КС АР:РС=21:3=7:1 ------------- [email protected]
Дан равнобедренный треугольник АВС, высота СЕ и основание АВ которого равны 8 см и 12 см соответственно. Точка Д находится на расстояние 4 см от плоскости треугольника и равноудалена от его сторон. Найдите расстояние от точки Д до сторон треугольника.
Проекция отрезка ДЕ на АВС - это радиус r вписанной окружности в треугольник АВС. r = S/p (р - полупериметр). АС = ВС = √(8² + (12/2)²) = √(64 + 36) = √100 = 10 см. р = (2*10+12)/2 = 32/2 = 16 см. S = (1/2)*12*8 = 48 см². Тогда r =48/16 = 3 см. Отрезок ДЕ как расстояние от точки Д до стороны треугольника АВС равен: ДЕ = √(3² + 4²) = √(9 + 16) = √25 = 5 см.
Рассмотрим треугольники ВДС и КЕС.
ВС:КС=12:3=4:1
СД:СЕ=8:2=4:1
Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол.
Второй признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны,
⇒КЕ параллельна ВД.
Проведем через А прямую, параллельную ВД.
Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно.
ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам.
⇒МС=ВС*2=24 см
МК=МС-КС=24-3=21 см
АР:РС=МК:КС
АР:РС=21:3=7:1
-------------
[email protected]
Точка Д находится на расстояние 4 см от плоскости треугольника и равноудалена от его сторон.
Найдите расстояние от точки Д до сторон треугольника.
Проекция отрезка ДЕ на АВС - это радиус r вписанной окружности в треугольник АВС.
r = S/p (р - полупериметр).
АС = ВС = √(8² + (12/2)²) = √(64 + 36) = √100 = 10 см.
р = (2*10+12)/2 = 32/2 = 16 см.
S = (1/2)*12*8 = 48 см².
Тогда r =48/16 = 3 см.
Отрезок ДЕ как расстояние от точки Д до стороны треугольника АВС равен:
ДЕ = √(3² + 4²) = √(9 + 16) = √25 = 5 см.