Уравнение прямой АВ: у=kx+b Чтобы найти коэффициенты k и b подставим координаты точек A и B, получим систему уравнений: х=4 у=3 3=4k+b (*) x=-2 y=0 0=-2k+b (**) Вычитаем из уравнения (*) уравнение (**): 3=6k ⇒ k= 1/2 Прямая, перпендикулярная прямой АВ имеет угловой коэффициент k=-2 Так как произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1) у=-2х+b - уравнение прямой, перпендикулярной АВ Чтобы найти b подставим координаты точки С х=2 у=-3 -3=-2·2+b ⇒ b=-3+4=1 ответ. у=-2х+1
1) Отрезки MN и KT пересекают во внутренней точке X так, что угол MXK = 60. Найдите меры углов MXT, TXN, KXN. <МХК=<TXN=60 град (вертикальные) <МХК+<KXN=180 град (смежные углы) <KXN=180 -60=120 град <KXN=<MXT=120 град ответ: <МХТ=120 град, <ТХN= 60 град, <КXN=120 град.
2) Найдите меры двух смежных углов, если один из них втрое больше другого. х - один из смежных углов 3х - второй из смежных углов 3х+х=180 4х=180 х=180 : 4 х=45 град - первый угол 45*3=135 град - второй угол ответ: 45 град, 135 град.
Чтобы найти коэффициенты k и b подставим координаты точек A и B, получим систему уравнений:
х=4 у=3
3=4k+b (*)
x=-2 y=0
0=-2k+b (**)
Вычитаем из уравнения (*) уравнение (**):
3=6k ⇒ k= 1/2
Прямая, перпендикулярная прямой АВ имеет угловой коэффициент k=-2
Так как произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1)
у=-2х+b - уравнение прямой, перпендикулярной АВ
Чтобы найти b подставим координаты точки С
х=2 у=-3
-3=-2·2+b ⇒ b=-3+4=1
ответ. у=-2х+1
<МХК=<TXN=60 град (вертикальные)
<МХК+<KXN=180 град (смежные углы)
<KXN=180 -60=120 град
<KXN=<MXT=120 град
ответ: <МХТ=120 град, <ТХN= 60 град, <КXN=120 град.
2) Найдите меры двух смежных углов, если один из них втрое больше другого.
х - один из смежных углов
3х - второй из смежных углов
3х+х=180
4х=180
х=180 : 4
х=45 град - первый угол
45*3=135 град - второй угол
ответ: 45 град, 135 град.