∠х = 60°
Объяснение:
Обозначим вершины треугольника. Вершину при ∠х - буквой А,
верхнюю вершину как В , вершину при ∠25° - С, точку пересечения медианы с АС как О.
1) Рассмотрим ΔОВС.
ОВ = ОС по построению, следовательно, ΔОВС - равнобедренный и
∠С = ∠ОВС - 25°. Тогда
∠ВОС = 180° - 2*25° = 130°
2) ∠АОВ и ∠ВОС - смежные, их сумма = 180°, значит,
∠АОВ = 180° - 130° = 60°
3) ΔВОА - равнобедренный, т.к. ВО =АО по построению. Тогда
∠х = ∠АВО = (180° - 60°)/2 = 60°
Все три угла в ΔВОА равны (х = ∠АВО =∠АОВ =60°), значит, этот треугольник равносторонний.
1) Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.
∠х = 60°
Объяснение:
Обозначим вершины треугольника. Вершину при ∠х - буквой А,
верхнюю вершину как В , вершину при ∠25° - С, точку пересечения медианы с АС как О.
1) Рассмотрим ΔОВС.
ОВ = ОС по построению, следовательно, ΔОВС - равнобедренный и
∠С = ∠ОВС - 25°. Тогда
∠ВОС = 180° - 2*25° = 130°
2) ∠АОВ и ∠ВОС - смежные, их сумма = 180°, значит,
∠АОВ = 180° - 130° = 60°
3) ΔВОА - равнобедренный, т.к. ВО =АО по построению. Тогда
∠х = ∠АВО = (180° - 60°)/2 = 60°
Все три угла в ΔВОА равны (х = ∠АВО =∠АОВ =60°), значит, этот треугольник равносторонний.
1) Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.