В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Fedotaq
Fedotaq
01.01.2023 08:11 •  Геометрия

на рисунке 2. ав - касательная к окружности с центром в точке о, точка в - точка касания, ос⊥(аов), длина отрезка ос равна радиусу окружности. найдите угол между плоскостями авс и аов. 2. отрезок nb  перпендикуляр к плоскости правильного треугольника авс, м - середина стороны ас (рис.3). укажите угол между плоскостями аnс и авс. а) nbm; б) nab; в) ncb; г) nmb. 3. на рис.1 точка о - центр вписанной в треугольник авс окружности, ом ⊥(авс), ок ⊥ ас. расстояния от точки м до точек а и к равны a и b соответственно. сравните величины a и b, если это возможно. 4. на рис.2 во α, вс a. какое соотношение верное? а) oc\od=1 ; б) oc\od> 1 ; в) oc\od< 1 ; г) невозможно определить.

Показать ответ
Ответ:
hahahagall
hahahagall
22.07.2020 14:09
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC  и из этого треугольника найдем  угол SCB.
Найдем сторону квадрата: 
BD²=2BC²,  (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания)   найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов
0,0(0 оценок)
Ответ:
весна37
весна37
10.04.2020 20:54
Равновеликие треугольники это значит что их площадь равна, вычисляем площадь треугольника МРК по трем сторонам используя формулу Герона:
S=корень квадратный из p*(р-МР)*(р-РК)*(р-МК), где р это полупериметр, p=(МР+РК+КМ)/2=(9+10+17)/2=18, тогда S=корень квадратный из 18*9*8*1=36. Это мы нашли площадь треугольника МРК.
Значит площадь треугольника АВС тоже 36 кв. см.

Теперь используем свойство высоты равнобедренного треугольника (В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой), значит проводим высоту СД. она делит основание пополам, значит АД=ДВ=12/2=6 см.

Теперь по формуле вычисления площади треугольника вычисляем длину высоты СД в треугольнике АВС:
S=1/2 АВ*СД, значит 36=1/2*12*СД, СД=36/6=6 см.

Теперь мы знаем основание и высоту треугольника АВС, а по
свойству углов равнобедренного треугольника мы знаем, что углы при основании равны и нам нужно найти только один угол в прямоугольном треугольнике АСД (угол СДА прямой, так как СД это высота). Если в прямоугольном треугольнике АСД мы знаем два катета АД=6 см и СД=6 см, это значит, что треугольник АСД равнобедренный. По свойствам суммы углов треугольника мы вычисляем сумму углов ДАС и АСД: 180-90=90 и делим пополам, так как эти углы равны 90/2=45.
Итак, мы знаем угол САД (он же САВ), и он равен углу СВА и равен 45 градусов.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота