На рисунке 22 изображен дорожный знак «Крутой подъем 12 %». Он означает, что через каждые 100 м, отсчитываемых по горизонтали, высота положения точки увеличивается на 12 м. Задание 1. Определите величину угла подъема при таком знаке, используя понятие тангенса угла.
1)Из истори Слово «ромб» греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене. Слово «ромб» греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене. В «Началах» Евклида термин «ромб» встречается только один раз в определениях I - ой книги, свойство ромба вообще не изучаются. Ромб также имел смысл бубна, который в древности был не круглым, а четырехугольным. В «Началах» Евклида термин «ромб» встречается только один раз в определениях I - ой книги, свойство ромба вообще не изучаются. Ромб также имел смысл бубна, который в древности был не круглым, а четырехугольным.
2)Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.
Назовем точку целой, если обе её координаты – целые числа. Сколько целых точек лежит на окружности с уравнением x² + y² = 2?
Объяснение:
x² + y² = 2 это уравнение окружности с центром в точке (0;0) и радиусом √2.
Значит окружность пересекает ось ох в точках с абсциссой -√2 и √2. Между этими числами целые -1,0,1.
Ось оу пересекает в точках с ординатами -√2 и√2. Между этими числами целые -1,0,1.
Перебираем
х=-1 , (-1)² + y² = 2 , у²=1 , у=±1 . Точки с координатами (-1;-1), (-1;1)-целые;х=0, 0²+у²=2 , у=±√2-это нецелое число ;х=1, 1²+у²=2 , у²=1 , у=±1 . Точки с координатами (1;-1) , (1;1) -целые;при у=-1, у=1 точки уже получены в пунктах 1)2). Считаем при у=0 ,х²+0²=2 ,х=±√2. Не подходит , тк ±√2-нецелое.
1)Из истори Слово «ромб» греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене. Слово «ромб» греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене. В «Началах» Евклида термин «ромб» встречается только один раз в определениях I - ой книги, свойство ромба вообще не изучаются. Ромб также имел смысл бубна, который в древности был не круглым, а четырехугольным. В «Началах» Евклида термин «ромб» встречается только один раз в определениях I - ой книги, свойство ромба вообще не изучаются. Ромб также имел смысл бубна, который в древности был не круглым, а четырехугольным.
2)Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.
Назовем точку целой, если обе её координаты – целые числа. Сколько целых точек лежит на окружности с уравнением x² + y² = 2?
Объяснение:
x² + y² = 2 это уравнение окружности с центром в точке (0;0) и радиусом √2.
Значит окружность пересекает ось ох в точках с абсциссой -√2 и √2. Между этими числами целые -1,0,1.
Ось оу пересекает в точках с ординатами -√2 и√2. Между этими числами целые -1,0,1.
Перебираем
х=-1 , (-1)² + y² = 2 , у²=1 , у=±1 . Точки с координатами (-1;-1), (-1;1)-целые;х=0, 0²+у²=2 , у=±√2-это нецелое число ;х=1, 1²+у²=2 , у²=1 , у=±1 . Точки с координатами (1;-1) , (1;1) -целые;при у=-1, у=1 точки уже получены в пунктах 1)2). Считаем при у=0 ,х²+0²=2 ,х=±√2. Не подходит , тк ±√2-нецелое.ответ . 4 точки.