На рисунке 70 прямая h перпендикулярна плоскости АВС, причем: a) точка М - середина отрезка ВС и НМ BC; б) ABCD - параллелограмм и HD DC; в) ABCD - ромб; г) = 90°, AC = 8 см, АВ 10 см и ДАНС 45°. Требуется: а) доказать, что АМ - биссектриса угла САВ; б) доказать, что ABCD прямоугольник; в) определить, перпендикулярны ли прямые BD и ОН; г) найти длину отрезков ВС, ВН и АН.
Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
Нарисуй прямоугольник авсd. проведи две диагонали ас и вd. отметь центр буквой о. и начерти от "о" до каждой стороны по короткому отрезку.. так как пересечение диагоналей произойдет в центре прямоугольника, то отсюда следует, что можно просто сложить эти короткие отрезки и найти стороны. ав=10+10=20см и так как они параллельны сd , то соответственно равны между собой по свойству прямоугольника. вc=10+10=20см и так как они параллельны аd , то соответственно равны между собой по свойству прямоугольника. периметр равен 2(аb+bc)=2(20+20)=80. ответ: р=80.