я так понимаю. что про АК и КС сообщили, чтобы пустить по ложному пути доказательство.) это условие тут ни к чему. Действительно, т.к. SB⊥(АВС), то SB перпендикулярна любой прямой, лежащей в плоскости АВС, в т.ч. и прямой СВ, которая является проекцией наклонной SС на плоскость АВС, СВ⊥АС по условию, но тогда по теореме о трех перпендикулярах и сама наклонная SС перпендикулярна АС, значит, ∠SCB- линейный двугранного угла при ребре АС, и этим линейным углом измеряется угол между плоскостями ABC и SAC
Так как призма вписана в шар, то своими углами она касается шара, и, следовательно, радиус шара будет равен также отрезку, проведенному из центра шара до одного из углов призмы (рисунок прилагается)
Рассмотрим треугольник АСС1, где С1О=ОА как радиусы описанного шара, то есть АС1=2R.
Треугольник прямоугольный, так как призма прямоугольная с высотой СС1. Основание АС равнo АВ√2 (как диагональ квадрата АВСD) = a√2, => по теореме Пифагора можем найти высоту СС1:
√(АС1²-АС²)=√((2R)²-(a√2)²)=√(4R²-2a²), и, как следствие, площадь боковой поверхности:
я так понимаю. что про АК и КС сообщили, чтобы пустить по ложному пути доказательство.) это условие тут ни к чему. Действительно, т.к. SB⊥(АВС), то SB перпендикулярна любой прямой, лежащей в плоскости АВС, в т.ч. и прямой СВ, которая является проекцией наклонной SС на плоскость АВС, СВ⊥АС по условию, но тогда по теореме о трех перпендикулярах и сама наклонная SС перпендикулярна АС, значит, ∠SCB- линейный двугранного угла при ребре АС, и этим линейным углом измеряется угол между плоскостями ABC и SAC
ответ ∠SCB
Так как призма вписана в шар, то своими углами она касается шара, и, следовательно, радиус шара будет равен также отрезку, проведенному из центра шара до одного из углов призмы (рисунок прилагается)
Рассмотрим треугольник АСС1, где С1О=ОА как радиусы описанного шара, то есть АС1=2R.
Треугольник прямоугольный, так как призма прямоугольная с высотой СС1. Основание АС равнo АВ√2 (как диагональ квадрата АВСD) = a√2, => по теореме Пифагора можем найти высоту СС1:
√(АС1²-АС²)=√((2R)²-(a√2)²)=√(4R²-2a²), и, как следствие, площадь боковой поверхности:
Sбок=Росн•h=4a•CC1=4a√(4R²-a²)