AM = 4 см; AC ~ 7,84; R ~ 3 см;
Объяснение:
a)
∠BAC =180-B-C =180-50-30 =100
∠BAM =∠BAC/2 =50 (AM - биссектриса ∠BAC)
∠BAM=∠B => △BMA - равнобедренный, AM=BM=4 (см)
б) ∠BМА = 180 - ∠В - ∠ВАМ = 180 - 50 - 50 = 100; ∠АМС смежный углу ∠ВМА, значит ∠АМС = 180 - ∠ВМА = 180 - 80 = 100.
АС ищем через теорему синусов, АМ/sin C = AC/sin AMC => AC = AM*sinAMC/sin C = 4 * sin 100/sin 30 = 8 * sin 100 ~ 8 * 0,98 ~ 7,84см
с) Радиус тоже через теорему синусов.
AC/sinB = 2R => R = AC / 2 * sin B = 7,84 / 2 * sin 50 ~ 3 см
Рисунок прикрепляю
ответ: AM = 4 см; AC ~ 7,84; R ~ 3 см;
Выполнил Барановский Владислав
Можно лучший ответ)
Ребро DС тетраэдра DABC перпендикулярно плоскости АВС. Известно, что АВ=5 см, АС =7 см, ВС=DC= 4 Корня из 2 см. Найдите угол между прямыми BD и Ас.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ
0
alinaromanova84
середнячок
5 ответов
10 пользователей, получивших
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
По теореме Пифагора:
Тогда
Отсюда
Определим линейную меру двугранного угла BDCA.
то ∠АВС - линейный угол двугранного угла
ответ:90°,45°,60°
AM = 4 см; AC ~ 7,84; R ~ 3 см;
Объяснение:
a)
∠BAC =180-B-C =180-50-30 =100
∠BAM =∠BAC/2 =50 (AM - биссектриса ∠BAC)
∠BAM=∠B => △BMA - равнобедренный, AM=BM=4 (см)
б) ∠BМА = 180 - ∠В - ∠ВАМ = 180 - 50 - 50 = 100; ∠АМС смежный углу ∠ВМА, значит ∠АМС = 180 - ∠ВМА = 180 - 80 = 100.
АС ищем через теорему синусов, АМ/sin C = AC/sin AMC => AC = AM*sinAMC/sin C = 4 * sin 100/sin 30 = 8 * sin 100 ~ 8 * 0,98 ~ 7,84см
с) Радиус тоже через теорему синусов.
AC/sinB = 2R => R = AC / 2 * sin B = 7,84 / 2 * sin 50 ~ 3 см
Рисунок прикрепляю
ответ: AM = 4 см; AC ~ 7,84; R ~ 3 см;
Выполнил Барановский Владислав
Можно лучший ответ)
Ребро DС тетраэдра DABC перпендикулярно плоскости АВС. Известно, что АВ=5 см, АС =7 см, ВС=DC= 4 Корня из 2 см. Найдите угол между прямыми BD и Ас.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ
0
alinaromanova84
середнячок
5 ответов
10 пользователей, получивших
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
По теореме Пифагора:
Тогда
Отсюда
Определим линейную меру двугранного угла BDCA.
то ∠АВС - линейный угол двугранного угла
ответ:90°,45°,60°