Если предположить, что равносторонний конус - это конус, у которого длина образующей равна диаметру основания, то ответ: Проведём осевое сечение конуса с вписанным в него шаром. Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1. Sk = So+Sбп So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2 Sk = π4 + π/2 = 3π/4 Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н = = (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3 Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3 Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.
Сумма углов треугольника 180°. =>
В ∆ АВС угол С=180°-(80°+60°)=40°
Сравним стороны данных треугольников, начиная с меньшей.
АВ=4, МК=8
АС=6, МN=12
BC=7, KN=14
Отношение длин сторон этих треугольников 1:2.
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Против сходственных сторон лежат равные углы.
Угол М заключён между МK и МN, т.е. между сторонами, пропорциональными АВ и АС меньшего треугольника и лежит против КN. =>
угол М=углу А=80°
Угол К лежит против МN и заключен между КМ и КN, эти стороны пропорциональны ВА и ВС соответственно.
Угол К=углу В=60°
Угол N=углу С=40°
Проведём осевое сечение конуса с вписанным в него шаром.
Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1.
Sk = So+Sбп
So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2
Sk = π4 + π/2 = 3π/4
Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н =
= (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3
Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3
Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.