на рисунки изображены равнобедренные треугольники имеют боковую сторону. доказать что треугоьник abc равен треугольнику abd если равны их оснавания ac и ad
Сначала найдем 3 угол в треугольнике, мы это сделаем благодаря теореме о сумме углов в треугольнике угол С= 180 градусов - 40 градусов - 80 градусов = 180-120 = 60 градусов меньшая сторона всегда лежит напротив меньшего угла (СЛЕДСТВИЕ) меньшая сторона 6 см это сторона ВС, так как напротив нее лежит наименьший угол А в треугольнике получается напротив наибольшего угла В будет лежать сторона АС, а напротив угла С - сторона АВ, которую м сейчас и найдем
по одной из теорем наибольшая сторона треугольника не должна превышать сумме двух других сторон большая сторона - 6см то есть 6см=АВ+ВС подставим 2 и 4 6см=2см+4см это верно ОТВЕТСторона АВ=2см
угол С= 180 градусов - 40 градусов - 80 градусов = 180-120 = 60 градусов
меньшая сторона всегда лежит напротив меньшего угла (СЛЕДСТВИЕ)
меньшая сторона 6 см это сторона ВС, так как напротив нее лежит наименьший угол А в треугольнике
получается напротив наибольшего угла В будет лежать сторона АС, а напротив угла С - сторона АВ, которую м сейчас и найдем
по одной из теорем наибольшая сторона треугольника не должна превышать сумме двух других сторон
большая сторона - 6см
то есть 6см=АВ+ВС
подставим 2 и 4
6см=2см+4см
это верно
ОТВЕТСторона АВ=2см
Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.