Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
x+y+2=0,
x-5y+2=0,
5x-y-14=0.
x+y+2=0, x+y+2 = 0
x-5y+2=0|x(-1) -x+5y-2 = 0
6y = 0, y = 0
y = -2-x = -2-0 = -2. Пусть это точка А(-2; 0).
x+y+2=0,
5x-y-14=0.
6х -12 = 0
х = 12/6 = 2,
у = -2-х = -2-2 = -4. Обозначим точку В(2; -4).
x-5y+2=0. x-5y+2 = 0
5x-y-14=0|x(-5) -25x+5y+70 = 0.
-24x + 72 = 0
x = 72/24 = 3.
y = 5x -14 = 5*3-14 = 15-14 =1 это точка С(3; 1).
Расчет длин сторон
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √32 ≈ 5,656854249,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √26 ≈ 5,099019514,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √26 ≈ 5,099019514.
Периметр Р = 15,85489.
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см