Обозначим соседние стороны прямоугольника за a и b. Тогда P=2(a+b), S=ab - формулы периметра и площади прямоугольника. Таким образом, 2(a+b)=24, ab=34.
Выразим b из первого равенства - 2(a+b)=24 ⇒ a+b=12 ⇒ b=12-a ab=34 ⇒ a(12-a)=34 ⇒ 12a-a²=34 ⇒ a²-12a+34=0. Решим это квадратное уравнение:
Если a=6+√2, то b=12-6-√2=6-√2. Если a=6-√2, то b=6+√2. Таким образом, одна сторона прямоугольника равна 6-√2, а другая 6+√2. Нетрудно убедиться в том, что периметр и площадь будут равны 24 и 34 соответственно.
Имеем прямоугольник ABCD. Диагонали AC и BD, которые пересекаются в точке O. Угол ABO=36градусов.Найти угол AOD.Т.к. диагонали прямоугольника равны и точкой пересечения делятся пополам, то треугольник ABO - равнобедренный. Значит, ABO=BAO=36.ABO+BAO+AOB=180 градусов. угол AOB= 180-( ABO+BAO). угол AOB=180 - (36+36)=108. Т.к. AOB+AOD=180(эти углы смежные), то AOD=180-108=72 градуса.
Выразим b из первого равенства - 2(a+b)=24 ⇒ a+b=12 ⇒ b=12-a
ab=34 ⇒ a(12-a)=34 ⇒ 12a-a²=34 ⇒ a²-12a+34=0. Решим это квадратное уравнение:
a²-12a+34=0, D=12²-4*34=144-136=8, √D=2√2
a1=(12+2√2)/2=6+√2, a2=(12-2√2)/2=6-√2.
Если a=6+√2, то b=12-6-√2=6-√2. Если a=6-√2, то b=6+√2. Таким образом, одна сторона прямоугольника равна 6-√2, а другая 6+√2. Нетрудно убедиться в том, что периметр и площадь будут равны 24 и 34 соответственно.
ИЛИ ТАК
Сначала найдём угол AOB. Треугольник AOB - равнобедренный с основанием AB, углы ABO и BAO равны 36 градусов. Угол AOB равен 180 - 2 * 36 = 108 градусов.Угол AOD равен 180 - AOB = 180 - 108 = 72 градуса.