На сторонах AB і AC трикутника ABC позначено відповідно точки D і Е. Відомо що EC=AB=4, AD=1, BC=8, AC=6. Знайдіть косинус кута BAC і довжину відрізка DE
Обозначим ключевые точки как показано на рисунке. Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке). Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба. Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF. DO=OB (по второму свойству ромба) /DOE=/BOF (т.к. они вертикальные) /EDO=/FBO (т.к. это внутренние накрест-лежащие) Следовательно, треугольники DOE и BOF равны по второму признаку. Тогда OE=OF => EF=2*OE=2*1=2 Sромба=EF*CD=2*9=18 ответ: Sромба=18
В угол можно вписать окружность. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Центр вписанной в угол ВСД окружности лежит на биссектрисе СР Центр вписанной в угол СДА окружности лежит на биссектрисе ДР Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности. Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности. Вариант решения: Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно. ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной. Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒ КО=ОМ Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒ НО=ОМ КО=ОМ, НО=ОМ⇒ КО=ОН=ОМ, что и требовалось доказать.
Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке).
Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба.
Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF.
DO=OB (по второму свойству ромба)
/DOE=/BOF (т.к. они вертикальные)
/EDO=/FBO (т.к. это внутренние накрест-лежащие)
Следовательно, треугольники DOE и BOF равны по второму признаку.
Тогда OE=OF => EF=2*OE=2*1=2
Sромба=EF*CD=2*9=18
ответ: Sромба=18
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Центр вписанной в угол ВСД окружности лежит на биссектрисе СР
Центр вписанной в угол СДА окружности лежит на биссектрисе ДР
Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности.
Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности.
Вариант решения:
Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно.
ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной.
Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒
КО=ОМ
Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒
НО=ОМ
КО=ОМ, НО=ОМ⇒
КО=ОН=ОМ, что и требовалось доказать.