На сторонах ab, bc, cd и da четырехугольника abcd отмечены соответственные точки m n p и q так что, am=сp, bn=dq, bm=dp, nc=qa. докажите, что abcd, mnpq - параллелограммы.
На сторонах AB, BC, CD и DA четырехугольника ABCD отмечены соответственные точки M N P и Q так что, AM=СP, BN=DQ, BM=DP, NC=QA. Докажите, что ABCD, MNPQ - параллелограммы.
***
Обозначим равные отрезки одинаковыми буквами:
АМ=СР=а
BN=DQ=b
BM=DP=c
NC=QA=d
АВ=а+с
СD=a+c ⇒ AB=CD
BC=b+d
AD=b+d ⇒ BC=AD
В четырехугольнике АВСD противоположные стороны попарно равны. ⇒
АВСD - параллелограмм ( 2-й признак)
–––––––––––––––––––––
Рассмотрим ∆ MBN и ∆ PDQ
∠ А=∠С как противоположные углы параллелограмма АВСD.
Содержащие эти углы стороны равны по условию ⇒
∆ MBN = ∆ PDQ по 1-му признаку.⇒ MN=PQ
Аналогично доказывается равенство сторон MQ и NP
В четырехугольнике MNРQ противоположные стороны равны ⇒ MNРQ - параллелограмм.
На сторонах AB, BC, CD и DA четырехугольника ABCD отмечены соответственные точки M N P и Q так что, AM=СP, BN=DQ, BM=DP, NC=QA. Докажите, что ABCD, MNPQ - параллелограммы.
***
Обозначим равные отрезки одинаковыми буквами:
АМ=СР=а
BN=DQ=b
BM=DP=c
NC=QA=d
АВ=а+с
СD=a+c ⇒ AB=CD
BC=b+d
AD=b+d ⇒ BC=AD
В четырехугольнике АВСD противоположные стороны попарно равны. ⇒
АВСD - параллелограмм ( 2-й признак)
–––––––––––––––––––––
Рассмотрим ∆ MBN и ∆ PDQ
∠ А=∠С как противоположные углы параллелограмма АВСD.
Содержащие эти углы стороны равны по условию ⇒
∆ MBN = ∆ PDQ по 1-му признаку.⇒ MN=PQ
Аналогично доказывается равенство сторон MQ и NP
В четырехугольнике MNРQ противоположные стороны равны ⇒ MNРQ - параллелограмм.