Т.к. в треугольнике сумма углов равна 180, то угол В=30 градусов.Высота делит АВС на 2 треугольника. Рассмотрим треугольник СDВ, где угол D=90, а угол В=30 градусам. СВ-гипотенуза, CD-катет, противолежащий углу в 30 градусов. Катет, противолежащий углу в 30 градусов равен половине длины гипотенузы, значит гипотенуза в 2 раза больше СD.
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
Сумма острых углов прямоугольного треугольника равна 90°.Т. к. один из острых углов равен 60°, значит, второй угол равен 90° - 60° = 30°. Против меньшего угла лежит меньшая сторона. Значит, против угла в 30° лежит меньший катет. Известно, что катет, лежащий против угла в 30°, равен половине гипотенузы. Пусть катет равен х см, тогда гипотенуза равна (2х) см. По условию сумма меньшего катета и гипотенузы равна 42 см. Составим и решим уравнение: х = 2х = 42 3х = 42 х = 42 : 3 х = 14 Значит, меньший катет равен 14 см, а гипотенуза равна 14 · 2 = 28 (см) ответ: 28 см.
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
Значит ВС равен 12 корень из 3
Против меньшего угла лежит меньшая сторона.
Значит, против угла в 30° лежит меньший катет.
Известно, что катет, лежащий против угла в 30°, равен половине гипотенузы.
Пусть катет равен х см, тогда гипотенуза равна (2х) см.
По условию сумма меньшего катета и гипотенузы равна 42 см. Составим и решим уравнение:
х = 2х = 42
3х = 42
х = 42 : 3
х = 14
Значит, меньший катет равен 14 см, а гипотенуза равна 14 · 2 = 28 (см)
ответ: 28 см.