на трех лучах исходящих из точки e и не лежащих в одной плоскости взяты отрезки aa1 bb1 cc1.ТАКИЕ, ЧТО ЕА:ЕА1=ЕВ:ЕВ1=ЕС:ЕС1=1:5.Докажите, что: а) прямая пересечения плоскостей АВ1С1 и А1ВС параллельна плоскостям А1В1С1 и ВС1С; б) прямая, проходящая через точки пересечения медиан треугольников АВС и А1В1С1, содержит точку Е.
Объяснение:
1) Докажем, что ВЕ=АС. Для этого докажем, что тр. АВЕ = тр. АВС:
1. уг.1 = уг.2 по условию
2. АВ - общая сторона
3. т.к. уг.1 = уг.2, уг.3 = уг.4 следовательно уг.А = уг.В
Следовательно тр. АВЕ = тр. ВАС по стороне и двум прилежащим к ней углам, следовательно ВЕ = АС чтд
2) Докажем, что ЕD = DC. Для этого докажем, что тр. ЕDA = тр. CDB:
1. уг.3 = уг.4 по условию
2. уг.Е = уг.С из предыдущего пункта
3. АЕ = ВС из предыдущего пункта
следовательно тр. EDA = тр. CDB по стороне и двум прилежащим к ней углам, следовательно ED = DC чтд
Пусть 4х см высота ВН, 5х боковая сторона АВ. По теореме Пифагора:
АВ²=ВН²+АН², подставим значения, получим
(5х)²=(4х)²+9²
25х²=16х²+81
25х²-16х²=81
9х²=81
х²=81:9
х²=9
х1=-3<0 не подходит
х2=3,
4*3=12 см высота ВН
5*3=15 см боковая сторона АВ=СD.
Найдем основание трапеции
Периметр АВСD=AB+BC+CD+AD
подставим известные значения, получим
64=15+ВС+15+АD
64=30+BC+AD
64-30=BC+AD
34=BC+AD, воспользуемся формулой площади трапеции: S=(AB+BC)*BH/2=34*12/2=204 см²
ответ: 204 см²