У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
За властивістю середної лінії сторона трикутника проти якої лежить середня лінія у два рази більша ніж середня лінія, тоді сторони трикутника відносяться як 6 : 10 : 14.Введемо коефіціент пропорційності x і складемо рівняння, так як сума усіх сторін дорівнює периметру трикутника.Нехай сторони трикутника a,b,c і нехай a = 6x, b = 10x, c = 14x.
P трикутника = a + b + c
30 = 6x + 10x + 14x
30 = 30x; x = 1
Отже сторони трикутника a = 6 * 1 = 6, b = 10 * 1 = 10, c = 14 * 1 = 14
Сторони трикутника 6;10;14
Объяснение:
За властивістю середної лінії сторона трикутника проти якої лежить середня лінія у два рази більша ніж середня лінія, тоді сторони трикутника відносяться як 6 : 10 : 14.Введемо коефіціент пропорційності x і складемо рівняння, так як сума усіх сторін дорівнює периметру трикутника.Нехай сторони трикутника a,b,c і нехай a = 6x, b = 10x, c = 14x.
P трикутника = a + b + c
30 = 6x + 10x + 14x
30 = 30x; x = 1
Отже сторони трикутника a = 6 * 1 = 6, b = 10 * 1 = 10, c = 14 * 1 = 14