начертите параллелепипед ABCDA1B1C1D1.Постройте сечение призмы плоскостью, проходящей через точки M,N и L середины его ребер AD,AA1 и DD1( только с дано,чертежом и т.д)
АВ = CD так трапеция равнобедренная, ∠ВАС = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников ВАС и CDA, ⇒ ΔВАС = ΔCDA по двум сторонам и углу между ними, значит ∠CAD = ∠BDA.
Тогда ΔAOD равнобедренный прямоугольный. ΔВОС подобен ему по двум углам, значит тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей. Для равнобедренных треугольников AOD и ВОС отрезки ОН и ОК - высоты и медианы, а в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине: КО = ВС/2 НО = AD/2, ⇒ KH = (AD + BC)/2 = 9 см, тогда AD + BC = 18 см
Pabcd = 2AB + AD + BC = 24 + 18 = 42 см
!Вообще, в если в равнобедренной трапеции диагонали перпендикулярны, ее высота равна средней линии!
Рассмотрим треугольник АМВ. Он равнобедренный по условию (ВМ=АМ). Значит, углы при его основании АВ равны. <MBA=<MAB. Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов). Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB. Но <MBA=<MAB как показано выше, значит <MBC=<MAC. Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними: - ВС=АС, т.к. АВС - равносторонний треугольник; - ВМ=АМ по условию; - соответственные углы МВС и МАС равны как показано выше. В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.
∠ВАС = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников ВАС и CDA, ⇒
ΔВАС = ΔCDA по двум сторонам и углу между ними,
значит ∠CAD = ∠BDA.
Тогда ΔAOD равнобедренный прямоугольный.
ΔВОС подобен ему по двум углам, значит тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей.
Для равнобедренных треугольников AOD и ВОС отрезки ОН и ОК - высоты и медианы, а в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине:
КО = ВС/2
НО = AD/2, ⇒
KH = (AD + BC)/2 = 9 см,
тогда AD + BC = 18 см
Pabcd = 2AB + AD + BC = 24 + 18 = 42 см
!Вообще, в если в равнобедренной трапеции диагонали перпендикулярны, ее высота равна средней линии!
<MBA=<MAB.
Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов).
Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB.
Но <MBA=<MAB как показано выше, значит
<MBC=<MAC.
Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними:
- ВС=АС, т.к. АВС - равносторонний треугольник;
- ВМ=АМ по условию;
- соответственные углы МВС и МАС равны как показано выше.
В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.