. Начертите треугольник ABC. а) Проведите прямую, параллельную стороне AC и пересека-
ющую стороны АВ и ВС в точках D и E соответственно.
б) Отметьте красным цветом угол треугольника ABC, равный
углу BDE.
в) Отметьте синим цветом угол треугольника ABC, сумма кото-
рого с углом DEC равна 180°.
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник)
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2
47
Объяснение:
Так как XYZ равносторонний треугольник, то его все углы равны по 60 градусов. => угол XZB = 103 + 60 = 163 градуса. Угол XZA = 180 - 163 = 17 градусов.
Не могу обозначит, т.к. на рисунке не установлена точка, но маленький треугольник внизу является прямоугольным, т.к. один из его углов является углом квадрата, который равняется, разумеется, 90 градусов. А значит, верхний угол этого треугольника будет равен 180-(90+17) = 73 градуса. Его вертикальный угол будет равен тоже 73 градуса по свойству вертикальных углов. Опять же, поскольку треугольник XYZ - равносторонний, то его угол ZXY равен 60 градусов.
Находим угол а. а = 180 - (60 + 73) = 47 градусов.