Напиши рівняння кола, яке проходить через точку 4 на осі Ox і через точку 8 на осі Oy, якщо відомо, що центр розташований на осі Ox . Примітка: якщо при обчисленні координати центра отримаєш дробове число - округли його до цілого.
Відповідь:
(x-)^2+y^2= ^2
Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины.
Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.
Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника.
Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О.
Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°.
В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360°
Таким образом, сумма всех внутренних углов многоугольника равна
n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле
, где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков.
10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота.
Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту.
По теореме Пифагора:
SC²=SO²+OC²
13²=SO²+5²
SO²=169-25
SO²=144
SO=12 см