Пусть диагонали ромба пересекаются в точке О: АС ∩ ВD = О, диагонали ромба относятся как 3:4 ⇒ половины диагоналей ромба также относятся как 3:4 ⇒ можно обозначить: АО = 4х, ОВ = 3х. Периметр ромба равен 40 ⇒ его сторона равна 40 : 4 = 10,
2. Строятся проекции этой вершины НА КАТЕТЫ треугольника в основании (то есть из вершины в плоскости бокового ребра проводится перендикуляр к катету основания).
3. Если внимательно посмотреть на фигуру, вершинами которой являются эти три проекции, а также - вершина прямого угла основания, то это - прямоугольник, в котором проекция бокового ребра на основание - это диагональ.
(Вы должны рассмотреть плоскости, проходящие через перпендикуляр к катету из вершины этого ребра и высоту всей призмы, проведенной из этой же вершины. Поскольку обе прямые перпендикулярны катету в основании, то вся эта плоаскоть перпендикулярна катету, и отрезок, соединяющий проекцию вершины на основание с проекцией этой вершины на катет, тоже перпендекулярен катету - он тоже лежит в этой плоскости. Это справедливо для обеих проекция на катеты. Поэтому там прямоугольник.)
4. Проекции бокового ребра на катеты основания фактически заданы - они равны
p3 = √(p1^2 + p2^2) = (5/2)*√(2 + 1) = 5*√3/2; (уже видно, что бовокая сторона наклонена к основанию под углом в 30 градусов, но я сейчас получу высоту призмы напрямую)
6. Нам известна длина наклонной 5 и длина её проекции 5*√3/2; поэтому расстояние от вершины бокового ребра до плоскости основания равно 5/2 - по Т.П.
Пусть диагонали ромба пересекаются в точке О: АС ∩ ВD = О, диагонали ромба относятся как 3:4 ⇒ половины диагоналей ромба также относятся как 3:4 ⇒ можно обозначить: АО = 4х, ОВ = 3х. Периметр ромба равен 40 ⇒ его сторона равна 40 : 4 = 10,
АВ = ВС = СD = DА = 10. По теореме Пифагора:
АВ² = АО² + ВО² = = 10² = 100 ⇒
x² = 100 : 25 = 4 ⇒ x = 2 ⇒ АО = 4х = 4*2 = 8, ОВ = 3х = 3*2 = 6,
AC = 2AO = 2*8 = 16, ВD = 2ОВ = 2*6 = 12. Площадь ромба равна:
S = 0,5 * AC * ВD = BH * AD ⇒
ответ: высота ромба ВН равна 9,6
Тут хорошо бы рисунок, но попробую как-то словами.
1. Строится проекция вершины бокового ребра, противолежащего гипотенузе на полоскость основания.
2. Строятся проекции этой вершины НА КАТЕТЫ треугольника в основании (то есть из вершины в плоскости бокового ребра проводится перендикуляр к катету основания).
3. Если внимательно посмотреть на фигуру, вершинами которой являются эти три проекции, а также - вершина прямого угла основания, то это - прямоугольник, в котором проекция бокового ребра на основание - это диагональ.
(Вы должны рассмотреть плоскости, проходящие через перпендикуляр к катету из вершины этого ребра и высоту всей призмы, проведенной из этой же вершины. Поскольку обе прямые перпендикулярны катету в основании, то вся эта плоаскоть перпендикулярна катету, и отрезок, соединяющий проекцию вершины на основание с проекцией этой вершины на катет, тоже перпендекулярен катету - он тоже лежит в этой плоскости. Это справедливо для обеих проекция на катеты. Поэтому там прямоугольник.)
4. Проекции бокового ребра на катеты основания фактически заданы - они равны
p1 = 5*cos(60) [...60 градусов, конечно...] = 5/2;
p2 = 5*cos(45) = 5*√2/2;
5.Это стороны прямоугольника, а диагональ равна
p3 = √(p1^2 + p2^2) = (5/2)*√(2 + 1) = 5*√3/2; (уже видно, что бовокая сторона наклонена к основанию под углом в 30 градусов, но я сейчас получу высоту призмы напрямую)
6. Нам известна длина наклонной 5 и длина её проекции 5*√3/2; поэтому расстояние от вершины бокового ребра до плоскости основания равно 5/2 - по Т.П.
7. Обем призмы равен (8^2/2)*(5/2) = 80