подставляем координаты точек В D и С 2а-d=0 4b-d=0 3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2) нормализуем уравнение плоскости. коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0 расстояние до точки (1;0;0) подставляем в уравнение 2/к- 4/к = -2/к = -2√18/√115=-6√230/115 расстояние модуль этого числа 6√230/115. рисунок есть у ранее решившего :)
.Проведем SO — высоту пирамиды и перпендикуляры SK, SM и SN к соответствующим сторонам ΔАВС. Тогда по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Так что ∠SKO = ∠SMO = ∠SNO = 60° — линейные углы данных двугранных углов. Значит, треугольники SKO, SMO и SNO равны по катету и остромууглу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание. В прямоугольном ΔAВС: 1. В правильной пирамиде все боковые рёбра равны, все боковые грани - равные равнобедренные тр-ки. Высота боковой грани называется апофемой правильной пирамиды. Следовательно, имеем боковую грань(равнобедр. тр-к с основанием=12 и высотой(апофемой)=15 см Высота равнобедр. тр-ка делит основание пополам и образует прямоуг. тр-к со стороной основания и бок. ребром пирамиды. Тогда по Пифагору: Бок. ребро=корень кв. из (6^2+15^2)=корень кв. из 261
координаты точек
А(0;0;0)
В(2;0;0)
С(0;4;0)
D(3;3;3√2). x=y≠6*cos(60) z=√(36-18)
уравнение плоскости BDC
ax+by+cz-d=0
подставляем координаты точек В D и С
2а-d=0
4b-d=0
3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2)
нормализуем уравнение плоскости.
коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0
расстояние до точки (1;0;0)
подставляем в уравнение
2/к- 4/к = -2/к = -2√18/√115=-6√230/115
расстояние модуль этого числа 6√230/115.
рисунок есть у ранее решившего :)
Следовательно, имеем боковую грань(равнобедр. тр-к с основанием=12 и высотой(апофемой)=15 см Высота равнобедр. тр-ка делит основание пополам и образует прямоуг. тр-к со стороной основания и бок. ребром пирамиды. Тогда по Пифагору:
Бок. ребро=корень кв. из (6^2+15^2)=корень кв. из 261