Мне объясняли так, что вот допустим треугольник АВС. Точки, с которых окр касается сторон треугольника назовем, например, на стороне АВ точка К, на стороне ВС точка Р, на стороне АС точка Н. Ну и теперь чтобы продвинуться от точки К к точки Н, по друге КН пройдем быстрее, чем по сторонам КА и АН, то есть КА+АН больше дуги КН. ну и так с остальными. НС+СР больше дуги НР. и РВ+КВ больше дуги КВ. И когда сложим и части окр и все части треугольника, получим, то дуга окр меньше периметра треугольника
Осевое сечение конуса – прямоугольный, равнобедренный треугольник, с углами 90°, 45°, 45° Гипотенуза которого, является диаметром основания цилиндра и равна х, тогда r=0,5x Высота, проведенная к основанию, является медианой и биссектрисой и разбивает осевое сечение на два равных треугольника и равна H=х√3/2 Гипотенуза треугольника, она же образующая L=r/cos45°=r√2=x*√2/2 Sб= πRl = π*0,5x* x*√2/2 = π* x²*√2/4 Sпп= Sб+Sосн= π* x²*√2/4 + x²/2= π* x²*(√2+2)/4 Sпп/ Sб=( π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2
Гипотенуза которого, является диаметром основания цилиндра и равна х,
тогда r=0,5x
Высота, проведенная к основанию, является медианой и биссектрисой и разбивает осевое сечение на два равных треугольника и равна
H=х√3/2
Гипотенуза треугольника, она же образующая
L=r/cos45°=r√2=x*√2/2
Sб= πRl = π*0,5x* x*√2/2 = π* x²*√2/4
Sпп= Sб+Sосн= π* x²*√2/4 + x²/2= π* x²*(√2+2)/4
Sпп/ Sб=( π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2