Навколо правильної трикутної піраміди описана куля висота піраміди h і утворює з більшим ребром кут (гамма) знайти обьем піраміди
Вокруг правильной треугольной пирамиды описан шар высота пирамиды h и образует с большим ребром угол (гамма) найти обьем пирамиды
Дано:
ABCD – прямоугольник;
АL – биссектриса угла BAD;
ВL=3 см;
LC=4 см.
Найти:
Р(ABCD)
Так как противоположные стороны прямоугольника паралельны, то AD//BC.
Следовательно угол ALB=угол DAL как накрест-лежащие при параллельных прямых AD u BC и секущей AL.
Угол BAL=угол DAL, так как AL – биссектриса угла BAD.
Исходя из найденного: угол ALB=угол BAL.
Тогда ∆ABL – равнобедренный с основанием AL. Следовательно АВ=BL=3 см.
Периметр прямоугольника можно найти по формуле:
Р=2*(а+б), где а и б – смежные стороны.
Тогда Р(АВСD)=2*(AB+BC)=2*(AB+BL+LC)=2*(3+3+4)=2*10=20 см.
ответ: 20 см.
я подробно опишу что именно нужно делать
Объяснение:
1) откладываешь от произвольной точки вектор а , затем от конца вектора а откладываешь вектор б, потом из начала вектора а ведёшь вектор к концу вектора б, это и будет вектор суммы по правилу треугольника
2)из произвольной точки откладываешь сразу и вектор б и вектор а, потом из конца вектора а откладываешь вектор равный вектору б и так же из вектора б откладываешь вектор равный вектору а, они должны сойтись в одной точке, потом из начальной точки ведешь вектор в точку где у тебя сошлись два вектора, это и будет вектор суммы по правилу параллелограмма
3) из произвольной точки откладываешь первый вектор, из его конца второй, затем из конца второго третий и так до последнего, потом ведёшь вектор из начальной точки к концу последнего(по сути как и в первом примере но векторов больше) и это и будет вектор суммы
на фото вектор с это ответ, вектора а и b взял произвольные
в 3 векторы тоже произвольные