Ромб - это параллелограмм, то есть противоположенные углы равны(по св-ву параллелогр.). Получим, что у нас уже есть 2 угла равных 80. Исходя из этого найдем оставшиеся 2 угла: 360(сумма всех углов четырехугольника) 360-160=200 200 : 2 = 100 Следовательно, другие два угла равны 100. Диагональ, допустим ВD, будет как раз делить пополам наш угол в 100 градусов. То есть ответ исходный: 50. Доказать(или объяснить), почему ВD делит угол пополам довольно просто: мы знаем, что любая диагональ ромба делит его на 2 равнобедренных треугольника, причем равных.(из определения ромба). Так как треугольники равные, то и углы при основании у них также равны.
1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
360(сумма всех углов четырехугольника)
360-160=200
200 : 2 = 100
Следовательно, другие два угла равны 100.
Диагональ, допустим ВD, будет как раз делить пополам наш угол в 100 градусов. То есть ответ исходный: 50.
Доказать(или объяснить), почему ВD делит угол пополам довольно просто: мы знаем, что любая диагональ ромба делит его на 2 равнобедренных треугольника, причем равных.(из определения ромба). Так как треугольники равные, то и углы при основании у них также равны.
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда: