№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
ответ:На основание равнобедренного треугольника опустим высоту ВМ,получились два равных прямоугольных треугольника,т к высота в равнобедренном треугольнике опущенная из вершины на основание, является и медианой и
биссектрисой
Рассмотрим треугольник АВМ,он прямоугольный,сторона АВ равна 10 см(по условию задачи),сторона
АМ=1/2 АС=16:2=8 см,т к образовавшиеся треугольники равны между собой
Теперь надо узнать
ВМ-это катет прямоугольного треугольника
Узнаём его по теореме Пифагора-сумма квадратов катетов равна квадрату гипотенузы,мы из квадрата гипотенузы вычтем квадрат известного катета
100-64=36 ,извлечём из 36 квадратный корень и получим 6,сторона ВМ=6
sin A острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе,т.е 6:10=0,6
tg A-отношение противолежащего катета к прилежащему
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
ответ:На основание равнобедренного треугольника опустим высоту ВМ,получились два равных прямоугольных треугольника,т к высота в равнобедренном треугольнике опущенная из вершины на основание, является и медианой и
биссектрисой
Рассмотрим треугольник АВМ,он прямоугольный,сторона АВ равна 10 см(по условию задачи),сторона
АМ=1/2 АС=16:2=8 см,т к образовавшиеся треугольники равны между собой
Теперь надо узнать
ВМ-это катет прямоугольного треугольника
Узнаём его по теореме Пифагора-сумма квадратов катетов равна квадрату гипотенузы,мы из квадрата гипотенузы вычтем квадрат известного катета
100-64=36 ,извлечём из 36 квадратный корень и получим 6,сторона ВМ=6
sin A острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе,т.е 6:10=0,6
tg A-отношение противолежащего катета к прилежащему
6:8=0,75
Объяснение: