Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Поскольку пл-ть А || пл-ти В и точки А1 и В1 принадлежат прямой РВ1, аналогично точк А2 и В2 принадлежат прямой РВ2, то прямая А1А2 || В1В2. Тогда РВ2 является секущей для параллельных прямых А1А2 и В1В2, тогда угол РА1А2 = углу РВ1В2 как соответственные. Аналогично РВ2 - секущая для параллельных прямых А1А2 и В1В2, тогда углы РА2 и РВ2 равны как соответственные, тогда треугольники РА1А2 и РВ1В2 подобны по трем углам (т.к. угол Р общий) и два других соответственно равны.
поскольку из условия дано что РА1/А1В1 = 3/2, то РВ1/РА1 = (РА1+А1В1)/РА1 = 5/3, тогда В1В2 = (РВ1/РА1) * А1А2 = (5/3) * 6 = 10 см
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Тогда РВ2 является секущей для параллельных прямых А1А2 и В1В2, тогда угол РА1А2 = углу РВ1В2 как соответственные.
Аналогично РВ2 - секущая для параллельных прямых А1А2 и В1В2, тогда углы РА2 и РВ2 равны как соответственные,
тогда треугольники РА1А2 и РВ1В2 подобны по трем углам (т.к. угол Р общий) и два других соответственно равны.
поскольку из условия дано что РА1/А1В1 = 3/2, то
РВ1/РА1 = (РА1+А1В1)/РА1 = 5/3, тогда
В1В2 = (РВ1/РА1) * А1А2 = (5/3) * 6 = 10 см
ответ: В1В2 = 10 см.