Вообще есть формула, которая описывает зависимость радиуса вписанной в правильный треугольник окружности от стороны этого треугольника. Выводится так: Центр вписанной окружности - точка пересечения биссектрис. В правильном треугольнике биссектриса является по совместительству медианой и высотой, поэтому, когда мы проведем все 3 биссектрисы, то получим маленькие п\у треугольнички, один из катетов которых - половина стороны, другой - радиус вписанной окружности. Угол, лежащий напротив радиуса, равен 30 градусов (потому как биссектриса). Значит r = 1/2 стороны * tg 30 = 3 * 1/V3 = V3. Тогда площадь этого круга будет равна pi * rˆ2 = 3pi.
Выводится так:
Центр вписанной окружности - точка пересечения биссектрис. В правильном треугольнике биссектриса является по совместительству медианой и высотой, поэтому, когда мы проведем все 3 биссектрисы, то получим маленькие п\у треугольнички, один из катетов которых - половина стороны, другой - радиус вписанной окружности. Угол, лежащий напротив радиуса, равен 30 градусов (потому как биссектриса). Значит r = 1/2 стороны * tg 30 = 3 * 1/V3 = V3.
Тогда площадь этого круга будет равна pi * rˆ2 = 3pi.