1. В трапеции сумма углов, прилегающих к одной стороне равна 180° Угол при нижнем основании трапеции равен:
180-135=45°
2. Высота, проведенная из вершины угла 135° разделила этот угол на 90° и 135-95=45°.
3. Получили равнобедренный прямоугольный треугольник, один катет которого равен 2,75дм. Значит и второй катет равен 2,75дм. А второй катет является высотой трапеции.
4. Высота разделила нижнее основание на отрезки. Значит длина нижнего основания равна:
27,5+68,3=95,8см
5. Верхнее основание равно разности отрезков нижнего основания, разделенных высотой:
68,3-27,5=40,8см
6. Площадь трапеции равна: половине суммы оснований умноженной на высоту:
ответ: 1878,25см²
Объяснение:
1. В трапеции сумма углов, прилегающих к одной стороне равна 180° Угол при нижнем основании трапеции равен:
180-135=45°
2. Высота, проведенная из вершины угла 135° разделила этот угол на 90° и 135-95=45°.
3. Получили равнобедренный прямоугольный треугольник, один катет которого равен 2,75дм. Значит и второй катет равен 2,75дм. А второй катет является высотой трапеции.
4. Высота разделила нижнее основание на отрезки. Значит длина нижнего основания равна:
27,5+68,3=95,8см
5. Верхнее основание равно разности отрезков нижнего основания, разделенных высотой:
68,3-27,5=40,8см
6. Площадь трапеции равна: половине суммы оснований умноженной на высоту:
S=(40,8+95,8)/2*27,5=1878,25см²
ответка
Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.
Подготовка к ЕГЭ Подготовка к ОГЭ Подготовка к олимпиаде Геометрия Алгебра Решение задач
Задать вопрос
Все вопросы
Нонна
Математика 5 - 9 классы
13.12.2019 18:05
Дан ромб ABCD, точка O пересечения диагоналей AC и BD, короткая диагональ равна стороне ромба.
1) Угол между векторами BA−→ и BD−→− равен °;
2) угол между векторами CB−→− и DA−→− равен °;
3) угол между векторами AB−→ и CA−→− равен °;
4) угол между векторами AD−→− и DB−→− равен °;
5) угол между векторами OB−→− и OC−→− равен