1. Треугольник называется равнобедренным, если любые две его стороны равны.
2. В равнобедренном треугольнике высота, проведённая к основанию является биссектрисой и медианой.
3. При пересечении двух прямых образовалось четыре угла. Один из углов равен 53 градуса . Найти остальные три угла.
ответ: другой, вертикальный к нему же равен 53°. Смежные с ним углы будут равны 180°-53°=127°. Этих углов тоже два.
4. Основание равнобедренного треугольника 14 см, а периметр 66 см. Найти длины боковых сторон треугольника.
ответ: (66-14):2=26 см длины боковых сторон треугольника.
5. Один из смежных углов на 24 градуса больше другого. Найти эти углы. ответ: Пусть х градусов мера одного угла, тогда (х+24)° - мера второго угла. Тогда сумма смежных углов равна 180°.
х+х+24°=180°
2°+24°=180°
2х°=180°-24°
2х=156°
х=156°:2
х=78° мера одного смежного угла.
78°+24°=102° мера второго смежного угла.
6. Градусные меры смежных углов относятся как 2:7. Найти эти углы. ответ: Пусть 2х - мера одного угла, тогда 7х - мера другого угла. Тогда их сумма равна 180°.
2х+7х= 180°
9х=180°
х=180°:9
х=20°.
Тогда первый угол равен 2х=2*20°=40°, второй угол равен 7х=7*20°=140°.
7.Сформулируйте 2 признак равенства треугольников и начертите рисунок к нему
Обозначим единицу пропорции Х, У. Тогда АL=1Х, СL=2Х, ВД=2У, СД=3У. (смотри рисунок).Далее находим площадь LДС=36, и ВLC=60-поскольку высоты треугольников АВL и ВLС равны то их площади относятся как их основания. Затем воспользуемся свойством биссектрисы и найдём отношение ВЕ/ЕL=2/1. Также относятся и площади треугольников ВЕД и ЕДL. ответ Sедсl=44. Но это не сложное решение, во втором варианте приводится решение, когда мы не знаем , что АД-биссектриса. Тогда проводим МД параллельно АС и далее из подобия треугольников МЕД и АЕL находим необходимые соотношения. Треугольники эти подобны по трём углам. ответ тот же Sedcl=44.
1. Треугольник называется равнобедренным, если любые две его стороны равны.
2. В равнобедренном треугольнике высота, проведённая к основанию является биссектрисой и медианой.
3. При пересечении двух прямых образовалось четыре угла. Один из углов равен 53 градуса . Найти остальные три угла.
ответ: другой, вертикальный к нему же равен 53°. Смежные с ним углы будут равны 180°-53°=127°. Этих углов тоже два.
4. Основание равнобедренного треугольника 14 см, а периметр 66 см. Найти длины боковых сторон треугольника.
ответ: (66-14):2=26 см длины боковых сторон треугольника.
5. Один из смежных углов на 24 градуса больше другого. Найти эти углы. ответ: Пусть х градусов мера одного угла, тогда (х+24)° - мера второго угла. Тогда сумма смежных углов равна 180°.
х+х+24°=180°
2°+24°=180°
2х°=180°-24°
2х=156°
х=156°:2
х=78° мера одного смежного угла.
78°+24°=102° мера второго смежного угла.
6. Градусные меры смежных углов относятся как 2:7. Найти эти углы. ответ: Пусть 2х - мера одного угла, тогда 7х - мера другого угла. Тогда их сумма равна 180°.
2х+7х= 180°
9х=180°
х=180°:9
х=20°.
Тогда первый угол равен 2х=2*20°=40°, второй угол равен 7х=7*20°=140°.
7.Сформулируйте 2 признак равенства треугольников и начертите рисунок к нему
Решение в приложении. Там 3 рисунка.
Обозначим единицу пропорции Х, У. Тогда АL=1Х, СL=2Х, ВД=2У, СД=3У. (смотри рисунок).Далее находим площадь LДС=36, и ВLC=60-поскольку высоты треугольников АВL и ВLС равны то их площади относятся как их основания. Затем воспользуемся свойством биссектрисы и найдём отношение ВЕ/ЕL=2/1. Также относятся и площади треугольников ВЕД и ЕДL. ответ Sедсl=44. Но это не сложное решение, во втором варианте приводится решение, когда мы не знаем , что АД-биссектриса. Тогда проводим МД параллельно АС и далее из подобия треугольников МЕД и АЕL находим необходимые соотношения. Треугольники эти подобны по трём углам. ответ тот же Sedcl=44.