96 АЕ = ЕК.
Докажите, что прямоугольник ABCD и треугольник AKD равновелики.
ответ : Равновеликими называются фигуры, имеющие равные площади.
Проведем КН⊥EF и рассмотрим треугольники АВЕ и КНЕ : ∠АВЕ = ∠КНЕ = 90°, АЕ = ЕК по условию, ∠АЕВ = ∠КЕН как вертикальные, ⇒ ΔАВЕ = ΔΔКНЕ по гипотенузе и острому углу.
Из равенства треугольников следует, что КН = АВ.
АВ = CD, значит КН = CD.
Рассмотрим треугольники KHF и DCF : ∠KHF = ∠DCF = 90°, KH = CD, ∠KFH = ∠DFC как вертикальные, значит ΔKHF = ΔDCF по катету и противолежащему острому углу.
Итак, Sabe = Skhe - зеленые треугольники, Skhf = Sdcf - желтые треугольники.
Площадь прямоугольника состоит из площади голубой трапеции, площади зеленого треугольника и площади желтого треугольника.
Из площадей таких же фигур состоит и площадь треугольника AKD, значитSabcd = Sakd.
Или можно записать все это в обозначениях : Sabcd = Saefd + Sabe + SdcfSakd = Saefd + Skeh + SkfhSabe = Skeh, Sdcf = Skfh, ⇒ Sabcd = Sakb.
Объяснение:
вот сам писал
Нужны:
1. Сумма углов треугольника
2.Теорема синусов.
Треугольник имеет шесть основных элементов: три угла A, B, C и три стороны a, b, c.
Решить треугольник – значит найти все эти шесть элементов.
Известны 2 угла и 1 сторона. Найти третий угол и две стороны.
Третий угол С =180-48-64=68°
ва с 14
= = = =15.1
sin(48°) sin(64°) sin(68°)0.9272
(точки - между а,в, с -для выдержки расстояния, иначе дробь не получается)
в= 0.7431*15.1= 11.22см
а=0.8988*15.1= 13.6см
Проверка:
с²=а²+ в²-2ав*cos(68°)
с²=184.96+ 125.89 -305.184(0.3746=184.96+125.89=114.32=196
с²=196
с=14
96 АЕ = ЕК.
Докажите, что прямоугольник ABCD и треугольник AKD равновелики.
ответ : Равновеликими называются фигуры, имеющие равные площади.
Проведем КН⊥EF и рассмотрим треугольники АВЕ и КНЕ : ∠АВЕ = ∠КНЕ = 90°, АЕ = ЕК по условию, ∠АЕВ = ∠КЕН как вертикальные, ⇒ ΔАВЕ = ΔΔКНЕ по гипотенузе и острому углу.
Из равенства треугольников следует, что КН = АВ.
АВ = CD, значит КН = CD.
Рассмотрим треугольники KHF и DCF : ∠KHF = ∠DCF = 90°, KH = CD, ∠KFH = ∠DFC как вертикальные, значит ΔKHF = ΔDCF по катету и противолежащему острому углу.
Итак, Sabe = Skhe - зеленые треугольники, Skhf = Sdcf - желтые треугольники.
Площадь прямоугольника состоит из площади голубой трапеции, площади зеленого треугольника и площади желтого треугольника.
Из площадей таких же фигур состоит и площадь треугольника AKD, значитSabcd = Sakd.
Или можно записать все это в обозначениях : Sabcd = Saefd + Sabe + SdcfSakd = Saefd + Skeh + SkfhSabe = Skeh, Sdcf = Skfh, ⇒ Sabcd = Sakb.
Объяснение:
вот сам писал
Объяснение:
Нужны:
1. Сумма углов треугольника
2.Теорема синусов.
Треугольник имеет шесть основных элементов: три угла A, B, C и три стороны a, b, c.
Решить треугольник – значит найти все эти шесть элементов.
Известны 2 угла и 1 сторона. Найти третий угол и две стороны.
Третий угол С =180-48-64=68°
ва с 14
= = = =15.1
sin(48°) sin(64°) sin(68°)0.9272
(точки - между а,в, с -для выдержки расстояния, иначе дробь не получается)
в= 0.7431*15.1= 11.22см
а=0.8988*15.1= 13.6см
Проверка:
с²=а²+ в²-2ав*cos(68°)
с²=184.96+ 125.89 -305.184(0.3746=184.96+125.89=114.32=196
с²=196
с=14